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Abstract
Understanding the functioning of biological systems depends on tackling complexity spanning spatial scales from
genome to organ to whole organism.The basic unit of life, the cell, acts to co-ordinate information received across
these scales and processes the myriad of signals to produce an integrated cellular response. Cells interact with and
respond to other cells through direct or indirect contact, resulting in emergent structure and function of tissues
and organs. Systems biology has traditionally used either a ‘top-down’ or ‘bottom-up’ approach. However, neither
approach takes account of heterogeneity or ‘noise’, which is an inherent feature of cellular behaviour and may have
significant impact on system level behaviour.We review existing approaches to modelling that use cellular automata
or agent-based methodologies, where individual cells are represented as equivalent virtual entities governed by
simple rules.These paradigms allow a direct one-to-onemapping between real and virtual cells that can be exploited
in terms of acquiring parameters from experimental systems, or for model validation. Such models are inherently
extensible and can be integrated with other modelling modalities (e.g. partial or ordinary differential equations) to
model multi-scale phenomena. Alternatively, hierarchical agent models may be used to explore the functions
of biological systems across temporal and spatial scales. This review examines individual-based models and
the application of the paradigm to explore multi-scale phenomena in biology. In so doing, it demonstrates how
cellular-based models have begun to play an important role in the development of ‘middle-out’ models, but with
considerable potential for future development.

Keywords: cellular automata; cell biology; computational modelling; emergent behaviour; middle-out modelling; software
agent; systems biology

INTRODUCTION

‘I believe very strongly that the fundamental unit,

the correct level of abstraction, is the cell and not

the genome’

Sydney Brenner, Lecture at Columbia University,

2003 (as quoted in [1])

In contrast to physics, engineering or chemistry,

biology is a data-driven science. In recent years, the

development of high-throughput technologies for

genomics, metabolomics, transcriptomics and pro-

teomics has generated phenomenal amounts of data,

such that in 2005, the rate of data generation was

estimated to be of the order of 1 terabyte (1012 bytes)
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per day for proteomics alone, with a 5–10-fold

increase expected year on year [2]. The field of

bioinformatics has developed alongside the four

‘omics’ approaches as a means to capture multi-

scale data inter-relationships and to facilitate the

storage, access and analysis of this plethora of

information. Predictive computational modelling is

a field that has also grown in the past two decades.

Driven by the need to make sense of the huge

volumes of omics data and facilitated by the

exponential growth in computational power,

computational modelling holds the promise of

revolutionizing biology as an interpretative and

predictive science.

As discussed by Southern and colleagues [3],

human biology bridges hierarchical scales of organi-

zation ranging from the gene, to proteins, individual

biological cells, tissues, organs, and finally the

organism, which directly interacts with its external

environment. Associated with this hierarchical orga-

nization is a spectrum of spatial and temporal scales,

the former ranging from �10�9 m at the gene/

protein level to �101 m for an individual (human)

organism, and the latter ranging from milliseconds

(�103 s) for molecular interactions to 80 years

(�109 s) for the average human life expectancy.

The two traditional approaches adopted to

interpret this complexity have been categorized as

‘top-down’ (driven by the observation of biological

characteristics and attempting to construct theories

that would explain the observed behaviour) and

‘bottom-up’ or reductionist (by studying the com-

ponents of the system in isolation, then attempting to

integrate the behaviour of each component in order

to predict the behaviour of the entire system) [4].

Recently, there has been a growing interest in a

‘middle out’ approach, whereby the initial focus is on

an intermediate scale that is gradually expanded to

include both smaller and larger spatial scales. In his

book ‘The Music of Life—Biology Beyond the

Genome’ [1], Denis Noble attributes the term

‘middle-out’ to the renowned molecular biologist

Sydney Brenner. The starting point for a ‘middle-

out’ approach to modelling biological systems may

be influenced by a number of factors, including the

ready availability of relevant experimental data and

the span of the biological scales of immediate interest

to researchers working in a particular field. For

instance, Cristofolino and colleagues proposed a

middle-out approach to simulating bone remodel-

ling under stress that started at the organ level [5].

The boundary loads were calculated from a whole-

body perspective and dynamic biological structure

was represented by constitutive equations, which also

incorporated parameters relating to cellular turnover.

Integration of the tissue and cellular levels of this

multi-scale approach remain under development.

Taking a holistic view of the nature of biological

systems, we support the argument that a natural

starting point for the ‘middle out’ approach is the

biological cell, which represents the basic unit of life.

Cells are capable of integrating the ‘hard-coded’

information encompassed within their genetic and

epigenetic makeup, with long- and short-range

cell-generated and environmental cues, to regulate

the profile of genes and proteins expressed and to

modulate cellular phenotype and response. The

summative effect of large numbers of individual

cells communicating directly (cell–cell contact) and

indirectly (cell–matrix contact or exogenous ligand–

receptor interactions) with one another and

their extracellular environment is the assembly of a

homeostatic community or tissue. Disruption of

tissue homeostasis resulting from dysregulation of

cells within the community may be manifested on

a macro-level as disease, with malignancy being the

ultimate example.

The wealth of accessible experimental data

available at the cellular level also makes it the natural

starting point for developing ‘middle out’ predictive

(simulation) models of biological phenomena [6].

The nature of the system behaviour under investiga-

tion in such a model will determine the level of

cellular detail included. Where the phenomenon of

interest occurs on a time scale that is significantly

faster than cell turnover, it is not necessary to include

representations of proliferation or apoptosis. For

instance, Southern and colleagues describe multi-

scale modelling approaches in cardiac physiology,

with individual cells abstracted to collections of ion

channels [3]; there is no concept of growth or

proliferation in this model. Furthermore, a cellular-

level approach does not necessarily imply that every

individual cell is represented explicitly. In cases

where the processes under consideration occur on

longer time scales, and in which proliferation,

apoptosis or migration may be of consequence but

intercellular heterogeneity can be neglected,

continuum approaches may be adopted. Here, the

time-dependent changes in population density

resulting from proliferation, apoptosis (cell death)

and migration are represented by mathematical rate
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equations (e.g. [7, 8]). Continuum models have been

widely applied to subcellular components, where,

providing that populations are large and well mixed,

behaviour can be described by simple rate equa-

tions—for example, modifications to protein activity

as a result of binding, dissociation, phosphorylation,

synthesis and degradation. By contrast, cells can

assume a variety of phenotypes and engage in

asynchronous behaviour depending on their current

genetic/proteomic state and the threshold of local

extracellular cues. Whereas many protein-based

simulations ignore spatial interactions, the relative

positioning and interactions between cells is funda-

mental to developing emergent tissue architecture.

Individual cell-based simulations thus have required

a new type of modelling paradigm that is capable

of including these characteristics.

CELLULAR AUTOMATA AND
SOFTWAREAGENTAPPROACHES
Cellular automata (CA)-based modelling has been

applied to a range of systems, including molecular,

bacterial, cellular and ecological (for reviews relating

to biological systems see [9, 10] and for physical

systems [11]). In this case, the ‘cellular’ does not

necessarily refer specifically to biological cells, but

to spatial elements in a 2D- or 3D-lattice. These

elements can either represent the presence of a single

entity, or a collection of similar entities. The state of

each cellular automaton (e.g. whether it contains a

live or dead biological cell or other entity of interest,

or remains empty) is updated iteratively based on

simple logical rules, which depend on its previous

state, that of its neighbours, or some other local

environmental variable. CA methods are useful for

representing cellular behaviour in cases where cell

shape and size can be ignored. By contrast, agent-

based or ‘off lattice’ cellular models have more

generic applications, as cells are not constrained to

particular points in space and cell shape can be

explicitly included as a model parameter. Unlike

more traditional continuum-based modelling meth-

ods, both CA and software agent paradigms are

highly suited to modelling emergent behaviour,

where complex behaviour at the level of the

biological system (e.g. tumour growth rate or

wound healing) is generated as an outcome of

direct and indirect interactions between large

numbers of individual cells. For a recent review of

on- and off-lattice approaches, and a comparison

with continuum models, see [12].

Agent-based modelling and CA modelling are

terms that are often used interchangeably. There has

been extensive debate about the precise definition of

a software agent. Wooldridge and Jennings defined

the four critical properties of an agent as ‘autonomy,

social ability, responsiveness and proactiveness’ [13].

In the context of cellular biology, software agents are

usually programmed to fulfill the first three of these

characteristics, but as cells are not goal-driven,

they are not usually considered to exhibit proactive

behaviour. The main distinguishing features between

CA and agent-based models are (i) CA models are

lattice-based, whereas agent-based models may or

may not be restricted in space (ii) generally agents

exhibit more complex memory states and sets of

behaviour and (iii) in agent models, the emphasis is

on the explicit representation of discrete biological

entities, whereas CA models focus on the state of

elements or automata, which may contain more than

one entity at any given time.

Over the last decade, both CA and software agent

paradigms have been applied increasing in the

context of cell biology. A recent review discussed

how the discrete nature of the agent model

lends itself to validation by direct comparison with

experimental systems—a process that is crucial in

order to ensure that the adopted rules are repre-

sentative of real biological behaviour [14].

Unfortunately, there is frequently a failure to validate

computational models against the experimental

counterpart, probably reflecting the hurdles

of interdisciplinary collaboration and a lack of

quantitative tools for comparing real and simulated

systems.

A third example of a cellular based paradigm is

the Cellular Potts models. Like CA models, this

methodology is also lattice-based; with each lattice

point defined either as inside or outside a biological

cell. The locations of cell surfaces are iteratively

determined by the minimization of a mathematical

function representing the ‘effective energy’ of the

cell, which comprises energy associated with surface

interactions, cytoplasmic fluctuations and response

to chemotactic stimuli [15]. This energy-based

definition of cellular location and shape contrasts

to the dependency of CA and software agents on

simple logical rules that reflect directly observable

behaviours (e.g. proliferation, apoptosis) governed by

underlying biological mechanisms (e.g. subcellular
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signalling). For this reason and due to space

constraints we do not discuss Cellular-Potts models

further in this review, but refer the interested reader

to [16] for a recent discussion of how this type

of model can be incorporated into a multi-scale

simulation environment.

In order to represent multiple biological scales

(e.g. cellular growth and migration that occur on a

time scale of hours, or protein interactions involved

in signal transduction that occur in seconds to

minutes) a common approach is to implement

computational models that are solved on multiple

temporal scales, or contain hierarchical spatial scales

(e.g. multiple subcellular compartments). For the

remainder of this review, we will use the word

multi-scale to refer to a model that includes more than

one spatial or temporal component, whilst explicitly

defining the biological scales, or components (cell,

extracellular protein) encapsulated by the model.

The focus of this review is multi-scale CA and

software agent models—i.e. those models that have

begun to fulfill the criteria of being a ‘middle out’

exploration of biological systems and that have

centred their approach on the concept of the

individual cell as the mediator of higher order

(tissue) structure and homeostasis. We have excluded

multi-scale models that bridge the molecular to

supra-cellular scale, but focus on physical, rather than

biological behaviour (e.g. the electrophysiological/

mechanical cardiac models of Noble and Hunter

[17]). We have restricted our review to models that

represent mammalian tissues (although multi-scale

approaches have been employed in a number of

non-mammalian systems including bacteria [18],

dictyostelium [19], xenopus morphogenesis [20]

and meristem development in plants [21]).

APPROACHESTO EXTENDING
CELLULARMODELS
Several multi-scale models that explicitly encap-

sulated cellular behaviour have appeared in the

literature in recent years, but prior to this there

was a general evolution in modelling approach.

Single-scale cellular automata models were initially

adopted for modelling cell behaviour, focussing

on representing cell proliferation, migration and

apoptosis [22]. Lattice-free or agent-based models

were also developed, where the ability of cells to

migrate or proliferate freely necessitated an explicit

consideration of the concept of mechanical

interactions between individual agents. This problem

was approached by both Drasdo et al. [23] and

Walker et al. [24] by integrating agent models with

numerical-based representations of intercellular

forces. Although these examples considered only a

single biological scale—the individual cell—as dis-

cussed above, the implementation of these models is,

in fact multi-scale, as the temporal scales of the agent

(biological) and mechanical model components are

separated (specifically, a slow time scale represents

cell behaviour, whilst a fast time scale is used to

update cell location in response to intercellular

forces, representing a process which is continuous

in the real world).

The majority of cellular level-based models have

evolved to incorporate phenomena occurring on

a subcellular length scale (signalling pathways or

gene networks), or extracellular processes involving

the secretion or diffusion of proteins, synthesis or

modification of extracellular matrix (ECM) or

intercellular signalling, whereas relatively few

models have been extended ‘upwards’ to include

higher biological hierarchies, for instance, to simulate

the formation of tissues or organs.

Biological multi-scale approaches may be classi-

fied under three main categories:

(i) Cellular-continnuum approaches. In this case, biologi-

cal subscales (e.g. ECM proteins) are represented in

the model as a field of values representing concen-

trations that are considered to be in steady-state. A

single time scale is incorporated in order to represent

cellular behaviour.

(ii) Spatially hierarchical approaches. Subcellular compo-

nents are explicitly represented in the model as a

lower hierarchy of agent, but without separation of

biological time scales.

(iii) Temporally separated approaches. A second model

modality (e.g. mathematical equations) is integrated

to represent processes that occur on a faster time

scale.

These three approaches are discussed in more

detail below, and shown schematically in Figure 1.

Cellular-continuum approaches
The simplest approach to multi-scale modelling is to

include the representation of a biochemical factor or

protein that can influence the behaviour of the

computational agents. Examples include the presence

of a varying field that represents an exogenous
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paracrine factor, nutrient or oxygen. In many cases,

the concentration of such a factor can be assumed to

be at steady-state with respect to the time scale of

the cellular based model component.

This approach has been used in order to simulate

spatial variations in solid tumour growth according

to the proximity of blood vessels [25] and

microvessel assembly and remodelling [26]. In

these examples, individual-based representations of

tumour [25] or vascular components (pericyte,

endothelial and smooth muscle cells) [26] were

modelled in conjunction with a CA lattice, on which

the relevant factors (oxygen and nutrients in [25];

transforming growth factor b (TGF-b), platelet-

derived growth factor B (PDGF-B) and exogenous

vascular endothelial growth factor (VEGF) in [26])

diffused on a similar time scale in accordance with

simple rules.

As well as incorporating the concept of a

continuum field that can influence the behaviour

of cells in some way, a similar approach can be used

to represent extracellular factors or structures that can

be actively modified by the cells. Take, as example,

ECM modification during the wound healing

process. Dallon and colleagues extended an early

continuum model that represented the interaction of

fibroblast cells with the orientation of fibres in the

surrounding collagen matrix [27] to incorporate an

individual-based description of fibroblast migration

on a pre-existing matrix (the ‘orientation’ model)

[28]. Fibre alignment and density were represented

by a vector field, which could be modified, deposited

or degraded by fibroblast agents which were later

permitted to proliferate [29]. A phenomenological

representation of the temporal variation of TGF-b
observed in wound healing experiments, and rules

determining how fibroblast migration speed, pro-

liferation and the deposition and degradation of

matrix proteins were modified by the concentration

of the growth factor, were later incorporated [30].

More recently, the role of chemoattractant produced

within the wound bed was investigated [31]. The

chemoattractant was assumed to have reached steady

state prior to fibroblasts migrating into the wound,

so remained fixed throughout the course of the

simulation. From the results, it was predicted that the

presence of the chemoattractant gradient reinforced

collagen fibre alignment, as fibroblasts that initially

migrated into the wound would lay down fibres to

guide the following cells—behaviour with potential

implications for tissue scarring.

Spatially hierarchical approaches
A second approach to multi-scale modelling is the

explicit inclusion of additional hierarchies of agents

representing subcellular or supracellular entities that

interact on a similar time scale. This approach allows
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Figure 1: Placement on the SSM [55, 56] of alternative
approaches tomulti-scalemodelling: (A) Individual based
model of cellular behaviour (box A) is embedded in a
continuum description of an extracellular field, which
remains at steady state (box B); (B) cellular level model
(box A) encapsulates an individual-based description of
a subcellular component (box B), which is updated on
a similar timescale and (C) subcellular process (box Bi)
or biophysical process (box Bii) is represented by a
second model component, which is updated on a faster
timescale.
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subcellular molecular and protein interactions

that might impact upon cellular behaviour to be

abstracted to stochastically driven events (e.g. bond-

ing or dissociation of particular cell surface receptors

and ligands). These events are determined by simple

rules, which, if desired, may be ‘tuned’ to represent

the continuous kinetics of biochemical interactions.

The explicit inclusion of spatially defined subagents

allows the interactions of cells with their micro-

environment (e.g. diffusing biochemical factors or

extracellular structures) to be resolved on a finer

spatial scale. Conversely, the inclusion of supra-

cellular agent hierarchies can allow the investigation

of cellular or subcellular interactions on tissue, organ,

or even systemic behaviour.

An example of this approach is a multi-scale agent

model developed to explore the mechanism of

initiation of angiogenesis in response to VEGF [32].

In this case, the model, representing a short segment

of a single vessel, incorporated two distinct hier-

archies of agents: memAgents, representing distinct

segments of endothelial cell membrane, and cell

agents representing endothelial cells with either a

tip or stalk phenotype. MemAgents, which were

encapsulated within individual endothelial cell agents

contained receptors for the growth factor VEGF.

Ligation of VEGF receptors resulted in activation of

delta ligand, which in turn, activated notch receptors

and down-regulated VEGF receptors on neighbour-

ing cells (i.e. a negative feedback loop). Activation

and regulation processes were modelled by equation-

based rules. At each time step, proteins associated

with MemAgents were summed over each of the

endothelial cell agents, with the number of activated

VEGF receptors determining the allocation of a tip

or stalk phenotype. MemAgents associated with tip

cells could extend or retract filopodia by the transfer

of ‘actin tokens’. Simulations run in uniform and

gradient distributions of VEGF produced distinct

emergent behaviours, with random extension and

retraction of filpodia in uniform VEGF fields, and

filopodia directed towards the VEGF source in linear

gradients. The adoption of a alternating ‘salt and

pepper’ pattern of tip and stalk cell phenotypes was

an emergent behaviour in both cases, with the model

predicting an oscillating, rather than stable pattern in

high VEGF concentrations.

A related biological phenomenon is the inter-

action of immune cells with the luminal surface of

blood vessels. Tang and colleagues developed a

multi-scale agent-based model of an in vitro flow

chamber experiment, comprising encapsulated soft-

ware agents (representing virtual leukocytes) that

could interact with flow chamber surface agents

(representing sections of the vessel wall in vivo) via a

set of membrane units [33]. The interaction of

membrane and surface units was determined by

the rule-based interaction of various cytokines and

adhesion molecules, allowing the formation of

contact zones. The presence or absence of bonds

within contact zones caused the leukocyte agents to

ratchet forwards on the surface, leading to inter-

mittent rolling behaviour followed by firm adhesion.

This emergent behaviour closely resembled the

behaviour observed experimentally. As well as

illustrating the applicability of a multi-scale agent

approach, where agents representing successively

smaller scales can be encapsulated within one

another, this article also set out to model an in vitro
rather than an in vivo system, where the behaviour

of agents at different levels could be validated

more easily.

As well as encapsulating subcellular agents,

cellular level models can also be encapsulated

within supracellular agent hierarchies. The process

of systemic inflammation underlying multiple organ

failure as a consequence of acute respiratory distress

syndrome (ARDS) was explored by combining

agent representations of organ and vascular surfaces

[34]. Specifically, an agent model of endothelial/

inflammatory cell interactions [35, 36] was combined

with a second, hierarchical agent model of the organ

luminal surface comprising gut or pulmonary

epithelial cells interconnected by tight junctions.

The integrity of the epithelial junctions could be

disrupted by the presence of pro-inflammatory

factors, including intracellular NF-kB and nitric

oxide. In the combined model, endothelial and

epithelial surface models were represented as parallel

layers, with the connecting space representing blood

or lymphatic vessels across which inflammatory cell

agents were free to move. Model predictions were

validated against in vivo observations reported in the

literature. To our knowledge, this is the only

hierarchical agent approach that to date has been

applied to simulate a systemic disease process.

As an alternative to explicitly representing

subcellular structures using a hierarchical agent

approach, subcellular biological scales may be

incorporated phenomenologically into a cellular

level model. For instance, the role of random genetic

mutations in determining the relevant ‘fitness’ of
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clonal subpopulations in tumour biology was

explored by allowing random changes in prolifera-

tion rate to simulate tumour cells in a CA-based

model of tumour expansion [37]. More recently,

a phenomenological representation of the loss of

the metastasis-suppressor E-cadherin protein has

been used in an agent-based model to explore the

interactions between normal and mutated cells

within mixed populations (D.C. Walker et al.,
submitted for publication).

Temporally separated approaches
This category of model explicitly incorporates

representations of processes which change on a

faster time scale than cellular scale phenomena (most

notably proliferation). Examples include (i) the

intercellular diffusion of autocrine or paracrine

growth factors, which can typically diffuse a distance

roughly equivalent to a cell diameter in less than a

second, (ii) receptor-binding or intracellular protein

phosphorylation events, which occur within seconds

to minutes at typical concentrations or (iii) biophys-

ical phenomena such as vascular flow, that may

result in the transport of biochemical factors, or even

cells. These approaches are more powerful in

explicitly capturing the complex interactions

between cells and their biochemical and biophysical

microenvironments, as well as the detailed dynamics

of intercellular interactions.

The modelling of integrated multiplex biological

processes with inherent time scale differences

(e.g. biochemical regulation of cell proliferation)

can be achieved by applying time-splitting techni-

ques, whereby a larger time step is used to represent

the slower, cellular level behaviour, and a faster time

scale represents the signalling processes. By contrast

to the models described in sections ‘Cellular-

continuum approaches’ and ‘Spatially hierarchical

approaches’ above, where subcellular processes are

represented by a lower hierarchy of agents whose

states are also determined by simple rules, in this case

the processes are usually represented by mathematical

differential equations that are solved using standard

numerical techniques. The two model components

are usually run consecutively, with an update of the

agent or CA model followed by an update of the

submodel representing the faster process. In the

case of intercellular signalling via the diffusion of

biochemical factors, changes in cell number, location

or factor secretion will influence the boundary

conditions or sources of molecular species in the

signalling model, whereas the spatial distribution

or intracellular concentration of key molecular or

protein species will influence cell fate decisions.

This scheme is thus well suited for exploration of the

concept of intercellular interactions by diffusive

or membrane bound signalling, or cellular interac-

tion with the molecular environment, for instance,

tumour cell behaviour in response to diffusing

oxygen or nutrients. In one example, the role of

phospholipase C (PLCw) in determining cell

phenotype in gliomas was investigated by extending

previously developed single scale CA models (e.g.

[25, 38]) to include the concept of autocrine TGFa
signalling [39, 40]. These extended models explicitly

encapsulated the processes of ligand release and

diffusion, binding of receptors and activation of

an intracellular-signalling cascade that controlled

the decision to adopt a migratory or proliferative

phenotype, and provided a feedback mechanism

by modulating the expression of genes encoding

receptor and ligand. The previously developed 2D

CA model framework was used to simulate tumour

cell behaviour, whereas diffusion of TGFa, nutrients

and oxygen from a blood vessel were represented by

partial differential equations (PDEs), and growth

factor binding, intracellular signalling pathways and

gene interactions were represented by ordinary

differential equations (ODEs). Simulations generated

using this multi-scale model suggested that the

density of receptors on the cell surface could

influence the rate of tumour expansion up to a

maximum saturation level, and that both migratory

and proliferative cell phenotypes were necessary for

a high rate of tumour expansion. A 3D implementa-

tion of this model was also applied to investigate the

effect of epidermal growth factor (EGF) signalling in

non-small cell lung cancer [41]. In a recent paper,

the ODE-based Tyson-Novak model of the cell

cycle [42] was incorporated within modelled cells,

allowing a more in-depth exploration of prolifera-

tion control [43].

Multi-scale methods have also been used in order

to study the role of biochemical signalling in the

context of growing epithelial cell populations. In one

example, differences between predicted and mea-

sured growth kinetics obtained respectively from

a lattice-free agent model simulation and epithelial

cells grown in culture [24] indicated the existence of

a contact-mediated pro-proliferative mechanism

that was not present in early versions of the model.

These observations prompted the development and
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integration of model components representing the

production, diffusion and binding of autocrine

growth factors in growing epithelial cell populations

[44], and juxtacrine-mediated intracellular signalling

via EGF receptor (EGFR) activation [45]. In the

latter case, the size and frequency of intercellular

contacts, which provided sites of intercellular signal-

ling, were closely based on observations derived from

time-lapse microscopy studies of real cells grown

in different culture environments. Again, diffusive

intercellular signalling processes were simulated using

PDEs, and juxtacrine and intracellular signalling was

represented using ODEs, with data passed at each

iteration from the slower agent model to the faster

signalling model. New data relating to receptor

occupancy [44] or activation of downstream intra-

cellular signalling molecules [45] was passed back to

the agent model, where it influenced the decision of

individual agents to progress through the G1/G0 cell

cycle checkpoint. Simulations generated by this

model indicated that the response of individual

cells was influenced by the local microenvironment,

leading to population heterogeneity. This hetero-

geneity was masked when data was averaged over

the entire cell population (as is the case for many cell

biological-based assays, such as western blotting) and

highlighted the danger of extrapolating population-

derived data to individual cells. Similar results were

reported in [46], where a generic model consisting of

a fixed ring configuration of cells, each encapsulating

a generic three-step activator-inhibitor signalling

pathway with feedback properties and coupled by

diffusion of the end product of the pathway, was

used to demonstrate the loss of resolution associated

with averaging measurements over space and time.

The role of direct cell–cell contact-mediated

signalling in the context of tumour invasion has

also been investigated using multi-scale models [47].

In this case, the adhesive and migratory behaviour of

individual cell agents was determined by the

intracellular distribution of E-cadherin and cytoplas-

mic b-catenin, with the latter represented by ODEs.

Loss of intercellular contact resulted in an increase of

free cytoplasmic b-catenin, active ‘random’ migra-

tion, and reduced intercellular adhesive force. The

results suggested that tumour growth could be

controlled directly by intercellular interactions. The

down-regulation of adhesion molecules by one cell

was shown to result in a ‘wave’ of loss of adhesion

and onset of active migration, leading to the

emergence of invasive behaviour.

Finally, multi-scale approaches have also been

used to integrate individual based descriptions of cells

with representations of vascular flow—a biophysical

process which, like signalling processes, occurs on a

faster time scale than cellular growth and prolifera-

tion. In [48], a CA-based model of individual

tumour cell migration and proliferation was inte-

grated with an explicit PDE-based representation of

oxygen diffusion from blood vessels. The topology

of the blood vessel network was explicitly repre-

sented and was itself the emergent outcome of a

separate model that was run prior to the tumour cell

CA model. A pressure gradient was applied to an

initial configuration of vessels, with the resultant

flow rate through the network calculated using

Kirchoff’s Laws. Vessel radii were updated to reflect

remodelling in response to changes in flow, and the

new flow rate calculated and fed back into the first

model until a steady state was reached. The final

network topology, and hence haematocrit distribu-

tion, provided the oxygen source for the tumour CA

model described above (which, again, was extended

to incorporate the Tyson–Novak cell cycle model

[42]). Hence, as well as incorporating subcellular

scale phenomena into a cellular level CA model, this

work demonstrated the applicability of physics-based

models in generating emergent tissue structures (in

this case, vessel networks) that may in turn influence

the behaviour of the surrounding cells. Although the

vessel and tumour growth are separated in time, with

the final vessel network geometry forming static

nutrient sources in the tumour growth model, in

reality, the two systems would evolve together. This

suggests that full integration of the two models could

provide a more realistic representation of the system.

A fully integrated approach to combining vascular

flow and cellular interactions has been developed in

order to study inflammatory processes [49]. In this

case, endothelial cells lining the vessel surface and

circulating leukocytes were represented as individual

agents, whereas bulk blood transport was modelled

separately using a network flow model. Although

the transport of leukocytes by flow was not

explicitly modelled, the prevalence of cells available

for interaction at each time-step was determined by

the computed haemodynamic parameters. Transport

of various soluble cytokines [interleukins, tumour

necrosis factor a (TNFa) and nitric oxide

(NO)] secreted by endothelial agents was included.

Rules for adhesion and migration depended on the

concentrations of these factors, as well as wall shear
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stress computed by the flow model and the density of

adhesion molecules on the leukocyte and endothelial

agent surfaces. Hence, unlike [33], the effect of

haemodynamics on the leukocyte/endothelial inter-

actions were explicitly included. In simulations,

this model successfully represented the sequence of

leukocyte-endothelial interactions observed in vivo
(initial contact, rolling, firm adhesion and extravasa-

tion). Simulated molecular ‘knock out’ studies also

matched independently published experimental

observations.

FUTURE CHALLENGES
A potential criticism of agent- and CA-based models

of cellular behaviour is that they are intrinsically

phenomenological and not capable of encapsulating

the complexity of a biological system. As argued

above and in [14], careful comparison of virtual and

experimental models provides a key to allaying these

criticisms. The development of multi-scale agent

models, and in particular those that aim to capture

the protein or gene level mechanisms that determine

cell phenotype, offers a further opportunity to ensure

that simulations capture the real system processes as

accurately as possible. Many of the examples

discussed above consist of a cellular and subcellular

(usually signalling-related) component and fit a

category of bi-scale models. Relatively few models

have encompassed supra-cellular level scales, with

the exception of An’s work on modelling systemic

inflammatory disease [34]. One explanation for the

prominence of the cell/pathway model is the

accessibility of signal transduction pathways and

also the relative simplicity of representing multiple

time scales using time-splitting approaches, which

have been applied widely to the modelling of

physical systems, particularly those utilizing lattice-

based methodologies (e.g. [50]).

It is clear that the extension of single-level CA/

software agent models to incorporate mechanistic

components is only a first step in fulfilling

the potential of the cell as the starting point for a

middle-out approach that spans the entire biological

continuum from gene to organism. However,

methods of representing multiple spatial scales are

non-trivial. Approaches adopted within the materials

modelling community include classical multi-grid or

domain decomposition methods, or more recently,

gap-tooth or Heterogenous Multiscale Methods

(HMM). The details of these methodologies are

beyond the scope of this review. However, we

refer interested readers to [51, 52] for a discussion of

these techniques. It is worth noting that these

methodologies have been developed for continuum

type (e.g. finite element) methodologies and their

application to models representing dynamic biologi-

cal processes, such as tissue growth and regeneration,

may not be straightforward. More appropriate may

be the continuum-atomistic coupling methodologies

discussed in [53].

As yet, there is no universally adopted theoretical

or computational framework for the assembly of

multi-scale biological models. A recent description of

a process for designing multi-scale, multi-science

(i.e. encapsulating physical, chemical and biological

phenomena) computational modelling frameworks

based on the construction of a Scale Separation Map

(SSM) has been proposed [54, 55]. This involves

dissecting a complex system into constituent

processes and representing each process within

logarithmic axes representing time and space. The

relationship(s) between any pair of processes—

whether overlapping, in contact, or separated, and

in the latter case, the relative direction of the offset,

determines the optimal computational methodology

for representing the processes. Those with sufficient

spatial and/or temporal separation to justify separate

models can be connected via conduits that can pass the

necessary data and also perform any required

operations (e.g. interpolation, summation or aver-

aging in time and space), as determined by the nature

of the individual models. The relative positions on

the SSM of the three categories of model identified

in this review are shown in Figure 1. In terms of

the categories identified in [54], it can be seen that

cellular steady-state approaches described above

correspond to a special uni-directional case of

micro-macro coupling (case 3.1 in [54]) where the

cellular level behaviour does not (usually) influence

the subcellular process, whereas temporally-separated

processes involving subcellular signalling correspond

to bi-directional micro-macro coupling. Spatially

hierarchical agents represent coarse and fine struc-

tures operating on similar temporal scales (case 2) and

temporally separated processes coupling cellular

models with blood flow correspond to case 3.2 in

[54], where slower processes on a smaller scale

are coupled to faster processes operating on a larger

scale.

There are other theoretical considerations

associated with the development of multi-scale,
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multi-paradigm models. For instance, within

equation-based models of signalling mechanisms,

the process of quantifying uncertainty with

approaches such as sensitivity analysis is well

established. How errors and uncertainties propagate

from one biological scale (e.g. subcellular signalling

events) to higher levels (e.g. tissue growth or

assembly) is an area that has undergone relatively

little investigation, though a recent publication

reports a cross-scale analysis in which components

of a particular modelled pathway were identified as

critical in determining cellular behaviour [56].

In addition to the scarcity of theoretical frame-

works for the development of multi-scale models,

there is also a lack of software frameworks (the reader

is referred to [57] for a general review of single-scale

agent-based modelling platforms). With the excep-

tion of [34], which was developed in the NetLogo

environment (http://ccl.northwestern.edu/netlogo/),

all models discussed in this review have involved

custom-written code, usually in languages with

object oriented capability to represent the agent or

individual based component, in combination with

libraries of standard numerical solvers for the PDE

or ODE component In some cases, external solvers

have been integrated with generalized agent plat-

forms (e.g. [39, 40]) where customized Java code was

integrated with Repast (http://repast.sourceforge.

net/), or [49] where Matlab code was integrated

with NetLogo. A recent publication has proposed an

open source Cþþ/Python based computational

framework for modelling immunological interac-

tions [58]. The Multiscale Systems Immunology

(MSI) framework incorporates a catalogue module—

a predefined database of biological and physical data

for specified cell/protein types, as well as modules

representing cell motility, chemokine diffusion and

reaction (these are solved sequentially using a time

splitting technique). The option exists to substitute

model modules (e.g. diffusion) with alternative

solution techniques. The developers have placed

emphasis on usability for non-expert programmers.

Finally, a multi-scale computational framework

based on the SSM conceptual framework is currently

under development – MUSCLE or Multi-Scale

Coupling Library and Environment [59]. It remains

to be seen whether the frameworks are adopted for

the design of future multi-scale models and if there is

uptake by the biological/medical communities.

A potential drawback of multi-scale, as opposed to

single scale, modelling approaches is the additional

computational overhead required to solve these

models. Particular agent-based frameworks (e.g.

FLAME— http://www.flame.ac.uk/) have been

optimized for parallel computation, but the protocols

used for the parallelization of agent models are not

necessarily applicable to, for example, the numerical

solution of PDEs representing more rapid intercellular

diffusion processes. As far as we are aware, none of the

models discussed in this review have been imple-

mented on a parallel architecture, and hence all are

ultimately limited in the number of agents and the

complexity of the subcellular processes represented.

These issues raise particular challenges for computer

scientists and software engineers involved in the

design of such computational frameworks. The vision

for CA and software agent-based models is that they

will provide a solution for systems biology to interpret

dynamic, biological relationships, most importantly at

the cellular level, that can then be integrated into

more general multi-scale models. However, fulfil-

ment of this vision will depend on future develop-

ment and amalgamation of bioinformatics and

modelling tools, including automated methods to

process and encapsulate information from large-omic

datasets. As argued by An [34], the strength of the

software agent paradigm is that it offers a conceptually

intuitive, non-mathematical framework within

which researchers in the biomedical community can

represent, exchange and revise dynamic biological

knowledge. Individual based models can serve as a

substantiation of conceptual models, and provide a

means for simulation to test hypotheses. The inherent

capacity of the paradigm to represent non-determi-

nistic and heterogeneous behaviour offers the oppor-

tunity to investigate the role of diversity in cellular

populations, and highlight potential implications for

experimental methodologies [45].

There are many challenges, both computational

and theoretical, facing those involved with the

development of multi-scale models. These are in

addition to the challenges relating to the engage-

ment of biologists and extraction of appropriate

biological data to both inform and validate models,

which are central to all computational biological

investigations of any scale or paradigm. However,

by embracing such challenges, life and physical/

computational scientists can work together

towards the goal of developing tools to aid under-

standing and prediction of complex biological

systems, and ultimately, to guide intervention in

human disease.
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